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1 Introduction

In this talk I will discuss some interesting subsets of ω1 – club-sets, Borel subsets, stationary and
bi-stationary subsets of ω1 – and the theorem about them that has been most useful to me over the
years, called Fodor’s Theorem. The question “How many types of stationary sets exist in ω1?” will
be a recurring theme. (Spoiler alert: there are uncountably many really distinct stationary subsets
of ω1.) In addition, I will mention some topological applications of stationary sets and Fodor’s
Lemma that have interested me over the years.

What do you need to know about ω1 before we start? You need to know that ω1 is an uncountable
well-ordered set with the special property that if α < ω1, then the initial segment [0, α) of ω1 is
countable, and that the countable union of countable sets is countable.

Like any linearly ordered set, ω1 has an open interval topology. In ω1, basic open neighborhoods
of an ordinal α have the form (β, α+1) = (β, α] where β < α. As a result, if α = β+1 is a successor
ordinal, then the singleton {α} = (β, α+ 1) is open, and if α 6= 0 is not a successor ordinal, then α
is a limit point of the space ω1.

The set of real numbers will be denoted by R and its usual linear order will be called ≺, while
the usual ε-order on ω1 will be denoted by <.

2 Closed unbounded subsets of ω1

In the order-topology of ω1, the uncountable closed subsets of ω1 are very interesting. Clearly,
a subset S ⊆ ω1 is uncountable iff it is cofinal in ω1 iff it is unbounded in ω1 so that uncountable
closed subsets of ω1 are called club-sets for “closed unbounded sets” 1.

Lemma 2.1 For a subset S ⊆ ω1, S is a club-set if and only if there is a continuous bijection from
ω1 onto S.

Proof: In case S is a club-set, the inductively defined order-preserving bijection h : ω1 → S is the
desired bijection. Conversely, if there is a continuous bijection g : ω1 → S, then S is certainly
uncountable and therefore unbounded in ω1. To show that S is a closed set, suppose λ is a limit

1sometimes abbreviated “CUB-sets”
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point of S. Then there is a sequence σ(n) of distinct points of S with σ(n)→ λ. For each n there is a
unique α(n) ∈ ω1 with g(α(n)) = σ(n). Then there is a subsequence2 α(nk) that converges to some
β ∈ ω1. Then g(α(nk)) → g(β) because g is continuous. But then we have g(α(nk)) = σ(nk) → λ
and g(α(nk)→ g(β) showing that λ = g(β) ∈ S. 2

Proposition 2.2 If {C(n) : n < ω} is a countable family of club-sets, then
⋂
{C(n) : n < ω} is

also a club-set.

Proof: As in any topological space, any intersection of closed sets is closed, We use an interlacing
argument to show that

⋂
{C(n) : n < ω} is nonempty and cofinal (= unbounded) in ω1. Fix any

α ∈ ω1. There is a strictly increasing sequence α < β(1) < β(2) < β(3) < · · · of elements of ω1

where β(n) is the first element in the nth entry in the following list

C(1), C(2); C(1), C(2), C(3); C(1), C(2), C(3), C(4); C(1), · · · , C(5); C(1), · · · , C(6); C(1), · · ·

that is greater than α, β(1), β(2), · · · , β(n− 1). Then γ = sup{β(n) : n < ω} ∈ ω1 and will belong
to each C(k) because infinitely may terms of the convergent sequence 〈β(n)〉 belong to the closed
set C(k). 2

If you write down a subset of ω1 as “the set of all elements of ω1 with a certain specified property,”
chances are that you will describe a subset of ω1 that contains a club-set, or whose complement
contains a club-set. The collection of all such sets is a well-known class. Recall that Borel(ω1) is
the smallest σ-algebra of subsets of ω1 that contains all closed subsets of ω1.

Lemma 2.3 A subset S ⊆ ω1 is a Borel set in ω1 if and only if either S or ω1 − S contains a
club-set.

Proof: Let B := {S ⊆ ω1 : either S or ω1−S contains a club set}. Then B is a σ-algebra containing
all closed sets, so that Borel(ω1) ⊆ B. We can complete the proof by showing that if the set S ⊆ ω1

contains some club-set C, then S is a Borel set. Because S = C ∪ (S − C), it will be enough to
show that S − C ∈ Borel(ω1).

Consider the open set ω1 − C. This open set is the union of a pairwise disjoint collection D of
countable sets3 of the form (α, β) with α < β ∈ ω1. Then

(∗) S − C = S ∩ (ω1 − C) =
⋃
{S ∩D : D ∈ D and S ∩D 6= ∅}.

Suppose we choose one point p(D) ∈ S ∩ D whenever D ∈ D and D ∩ S 6= ∅. Then the set
E := {p(D) : D ∈ D and S ∩D 6= ∅} is the intersection of its own closure with the open set ω1−C,
so that the set E is a Borel set.

For each D ∈ D with D ∩ S 6= ∅, index the set S ∩D as S ∩D = {p(D,n) : n < ω}, possibly
with repetitions. By the previous paragraph, for each fixed n the set E(n) := {p(D,n) : D ∈
D and D ∩ S 6= ∅} is a Borel set, and from (*) above, S − C =

⋃
{E(n) : n < ω}, showing that

S − C is a countable union of Borel sets, and hence S = C ∪ (S − C) is also a Borel set. 2

2Any sequence in any linearly ordered set has a monotone subsequence
3These sets are the equivalence classes of the relation on G = ω1 − C given by γ ∼ δ iff every point between γ

and δ belongs to G. Because C is cofinal in ω1, each of the equivalence classes is countable.
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Definition 2.4 Suppose B is a σ-algebra of subsets of a set X. By a probability measure on B we
mean a function p : B → R with the following properties:

a) p(B) ≥ 0 for all B ∈ B;

b) X ∈ B and p(X) = 1

c) If Bn is a sequence of pairwise-disjoint sets in B, then p(
⋃
{Bn : n < ω}) = Σ{p(Bn) :

n < ω}.

If it happens that p(B) ∈ {0, 1} for every B ∈ B then p is a two-valued probability measure.

Example 2.5 Given Lemma 2.3 we obtain a two-valued probability measure on Borel(ω1) if we
define p(B) = 1 is B contains a club set, and p(B) = 0 otherwise.

See the final section for more on probability measures.

3 Stationary sets in ω1

One of the first really surprising results about ω1 is that non-Borel subsets of ω1 must exist
(under AC). Mary Ellen Rudin gave the following elegant proof in [15]. In order to minimize the
amount of choosing, my version of the proof is more cluttered than it would otherwise need to be.

Theorem 3.1 There is a subset S ⊆ ω1 such that neither S nor ω1 − S contains a club-set.

Proof: Suppose not. Then for every subset S ⊆ ω1, either S or ω1−S contains a club-set. Because
|ω1| ≤ |R| we can fix an injection g : ω1 → [0,→) ⊆ R.

For each integer n ≥ 1 there is a collection J (n) of subsets of [0,→) satisfying

a) J (n) is countable and the usual ordering ≺ of R gives a well-ordering of each J (n) ;

b)
⋃
J (n) = [0,→);

c) each J ∈ J (n) has diameter ≤ 1
n

For example, with [a, b) denoting the usual half-closed interval in (R,≺), we could let J (1) =
{[n, n + 1) : n < ω} and J (n) be the collection of half-closed intervals with consecutive points in
{k, k + 1

n
, k + 2

n
, · · · : k < ω, 1 ≤ n ∈ ω} as endpoints. Each collection J (n) is welll-ordered.

Fix n. We claim that for some J ∈ J (n), the set g−1[J ] contains a club-set in ω1. If not, then for
each J ∈ J (n), ω1−g−1[J ] contains a club-set CJ (apply our supposition that each subset of ω1, or
its complement, contains a club). By Proposition 2.2 the set D :=

⋂
{CJ : J ∈ J (n)} is a club-set

in ω1. Consider any δ ∈ D. Then g(δ) ∈ [0,→) and yet for each J ∈ J (n), δ ∈ CJ ⊆ ω1 − g−1[J ]
which shows that g(δ) does not belong to any J ∈ J (n) even though

⋃
J (n) = [0,→). That is

impossible, and so our claim is established.

Therefore, for each integer n ≥ 1 we may choose the first Jn ∈ J (n) (in the well-ordering of
J (n)) such that g−1[Jn] contains some club-set Dn. Once again applying Proposition 2.2, we see
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that the set E :=
⋂
{Dn : n ≥ 1} is a club-set, so we can choose α, β to be the first two members of

E. Then g(α) 6= g(β) and for each n, α, β ∈ Dn ⊆ g−1[Jn] so that for each integer n ≥ 1 we have
0 < |g(α)− g(β)| ≤ diam(Jn) ≤ 1

n
and that is impossible. Consequently, Theorem 3.1 is proved. 2

Question: How much of the Axiom of Choice is needed in the proof of Theorem 3.1?

The set in Theorem 3.1 has a special property: even though it does not contain any club-set,
it has a non-empty intersection with every club-set, because otherwise ω1 − S would contain some
club-set.

Definition: Any set that intersects every club-set in ω1 is called a stationary subset of ω1.

The set in Theorem 3.1 has a second property: its complement also intersects every club-set because
otherwise S would contain a club-set.

Definition: Any set S ⊆ ω1 with the property that both S and ω1 − S intersect every club-set is
called a bistationary set.

Stationary and bistationary subsets of ω1 are “big” sets and behave almost like second category
subsets of R as our next result shows.

Corollary 3.2 If S ⊆ ω1 is stationary and S =
⋃
{An : n ≥ 1}, then some set An is stationary.

Proof: Otherwise for each n there would be a club-set Cn with An ∩ Cn = ∅. By Proposition 2.2,
the set D :=

⋂
{Cn : n ≥ 1} is a club-set. But D ∩ An = ∅ for each n so that D ∩ S = ∅, and that

is impossible because S is stationary. 2

In my own work, the most important property of stationary subsets has been a result known
as “Fodor’s Theorem” or the “Pressing Down Lemma” (PDL) concerning what are called pressing-
down functions.

Definition: For a subset S ⊆ ω1, any function f : S → ω1 with f(α) < α for each α ∈ S − {0} is
a pressing-down function. Such functions are also known as regressive functions. (See [4, 12].)

Theorem 3.3 (Fodor’s Theorem) Suppose S is a stationary subset of ω1 and suppose f : S → ω1

satisfies f(α) < α for each α ∈ S − {0}. Then f is constant on a stationary subset, i.e., there is
some β ∈ ω1 and some stationary set T of ω1 with T ⊆ S and having f(α) = β for all α ∈ T .

The usual proof of Fodor’s theorem uses an idea called “diagonal intersection” of club-sets as in
the next lemma.

Lemma 3.4 Suppose D(α) is a club-set for each α < ω1. Then the set E := {δ < ω1 : δ ∈⋂
{D(α) : α < δ}} is a club-set.

Proof: Replacing D(α) by the club-set
⋂
{D(β) : β ≤ α} if necessary, we may assume that D(β) ⊆

D(α) whenever α < β.

First we show that the set E is cofinal in ω1. Start with any α(0) < ω1 and choose α(1) ∈ D(α(0))
with α(0) < α(1). Choose α(2) ∈ D(α(1)) with α(0) < α(1) < α(2). Inductively define α(n) so that
α(0) < α(1) < α(2) < · · · < α(n) < α(n + 1) and α(n + 1) ∈ D(α(n)). Compute γ = sup{α(n) :
n < ω}. Observe that if m < n then α(n) ∈ D(α(n− 1)) ⊆ D(α(m)). Because D(α(m)) is closed,
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we know that γ ∈ D(α(m)). Therefore γ ∈
⋂
{D(α(m)) : m < ω} =

⋂
{D(α) : α < γ}, showing

that γ ∈ E and γ > α(0).

Next we show that E is closed. Suppose λ is a limit point of E. Then there is a strictly increasing
sequence sequence δ(n) ∈ E with λ = sup{δ(n) : n < ω}. For each fixed m < ω, if n > m then
δ(n) ∈

⋂
{D(α) : α < δ(n)} ⊆

⋂
{D(α) : α < δ(m)}. Because

⋂
{D(α) : α < δ(m)} is closed, it

follows that λ ∈
⋂
{D(α) : α < δ(m)}. Because m < ω was arbitrary, we know that

λ ∈
⋂
{
⋂
{D(α) : α < δ(m)} : m < ω} =

⋂
{D(α) : α < λ}

so that λ ∈ E, as required to show that E is closed. 2

Now we can prove Fodor’s Theorem. We have a stationary set S and a pressing-down function
f : S → ω1. For contradiction, suppose no fiber f−1[β] of f is stationary. For each α ∈ S the set
N(f(α)) = f−1[f(α)] is non-stationary, so there is a club-set D(f(α)) with N(f(α))∩D(f(α)) = ∅.
For each α 6∈ {f(β) : β ∈ S}} let D(α) = ω1. Then the set E = {δ < ω1 : δ ∈

⋂
{D(β) : β < δ}} is

a club-set. Because S is stationary and the set E is a club-set, there is some δ ∈ S ∩ E. Because
δ ∈ S we know that f(δ) < δ and that the non-stationary set N(f(δ)) and the club-set D(f(δ))
are defined and have N(f(δ)) ∩ D(f(δ)) = ∅. In addition, we see that δ ∈ f−1[f(δ)] = N(f(δ)),
and because δ ∈ E and f(δ) < δ we also have δ ∈

⋂
{D(α) : α < δ} ⊆ D(f(δ)) contrary to

N(f(δ)) ∩D(f(δ)) = ∅. This proves Fodor’s Theorem. 2

4 Topological properties of stationary subsets of ω1

The proof of our next result includes an example of what one must do to exploit the definition
of a stationary set.

Proposition 4.1 Suppose S ⊆ ω1 is a stationary set and suppose f : S → R is a continuous
function. Then f is eventually constant, i.e., there is some α ∈ ω1 with the property that f(α) =
f(β) whenever α < β ∈ S. Consequently, the set {f(γ) : γ ∈ ω1} is countable.

Proof: We start with an almost-proof and then show how to make it a real proof. Our first step
is to prove that if 1 ≤ m is given, then there is some αm with the property that whenever β, γ ∈
S∩ [αm, ω1), then |f(β)−f(γ)| < 1

m
. Once we have such αm, we would let α = sup{αn : 1 ≤ n < ω}

and we would know that α ∈ ω1 and that if α < β, γ ∈ S, then f(β) = f(γ) as required.

Now fix m ≥ 1 and we will almost succeed in finding αm with the properties described above.
Suppose no such αm exists and let β1 be the first point of S. This allows us to choose a sequence
of points of S having β1 < γ1 < β2 < γ2 < · · · with |f(βk) − f(γk)| ≥ 1

m
for each k. Compute

δ = sup{βk : 1 ≤ k < ω}. Clearly δ = sup{γk : 1 ≤ k < ω} so that we have

0 = |f(δ)− f(δ)| = | lim(f(βk))− lim(f(γk))| = lim |f(βk)− f(γk)| ≥
1

m

and that is impossible. But – and here is the problem – how do we know that f(δ) is defined, i.e.,
how do we know that δ ∈ S?
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Fixing that problem involves a standard trick. Let us say that an ordinal η < ω1 is f -ok if there
is a sequence β1 < γ1 < β2 < γ2 < · · · in S having |f(βk) − f(γk)| ≥ 1

m
and η = sup{βk : 1 ≤ k <

ω} = sup{γk : 1 ≤ k < ω}. Show that the set E = {η : η is f − ok} is a club-set, and once we
know that, then there is some δ ∈ E ∩ S that is the supremum of sequences βk and γk as in the
first paragraph. Now the proof is complete.2

We will illustrate the utility of Lemma 3.3 by giving a few of its topological consequences.

Proposition 4.2 Suppose S is a stationary subset of ω1 and suppose that f : S → ω1 is a con-
tinuous4 function with the property that for each β ∈ ω1, the set f−1[β] is countable. Then the set
T = {f(α) : α ∈ S} is also a stationary subset of ω1.

Proof: Suppose T is not stationary. Then there is a club-set C with T ∩C = ∅ so that T ⊆ ω1−C.
The set ω1 − C, like any open subset of ω1, breaks into a union of pairwise disjoint open intervals
called convex components of ω1 − C.5 Let V be the collection of all convex components of ω1 − C.
Because C is cofinal in ω1, each V ∈ V must be countable.

Let U := {f−1[V ] : V ∈ V}. Then U is a pairwise disjoint collection of relatively open subsets
of S, and because each fiber f−1[β] of f is countable, each set f−1[V ] is also countable.

It is easy to prove that because S is a stationary subset of ω1, then so is the set Sd consisting
of all limit points of S that belong to S, and we have Sd ⊆ S ⊆

⋃
U . (Warning: Sd is not the

same as the set of limit ordinals that happen to belong to S.) For each α ∈ Sd choose the unique
member Uα ∈ U with α ∈ Uα. Because α is a limit point of S, there is a point g(α) < α such that
[g(α), α] ∩ S ⊆ Uα. Then g : Sd → ω1 is a pressing-down function with the stationary set Sd as its
domain, so there must be some β ∈ ω1 for which g−1[β] is uncountable. Let α1 be the first member
of g−1[β] and choose U1 ∈ U such that α1 ∈ U1. The set U1 is countable, so there must be some
α2 ∈ g−1[β] that is strictly above every point of U1. Therefore there is some U2 ∈ U with α2 ∈ U2

and U1 6= U2. Therefore U1 ∩ U2 = ∅. But α1 ∈ [β, α2] ∩ S ⊆ U2 ∩ S and α1 ∈ U1 so U1 ∩ U2 6= ∅.
That contradiction shows that the set T = g[S] must be stationary, as claimed. 2

And now let’s turn to the question that interested me most when I learned about stationary
sets: How many different types of stationary subsets of ω1 exist? That depends on what “same”
and “different” mean. Recall that two topological spaces X and Y are homeomorphic provided
there is a bijective function h : X → Y with the property that both h and h−1 are continuous. If
S ⊆ ω1 is a stationary set that contains a club-set and T is a stationary set that does not, then it
is an easy matter to prove that S and T cannot be homeomorphic (because S has an uncountable
subspace that contains the limit of each of its sequences, while T does not). But what if neither S
nor T contains a club? In the most extreme case, what if S ∩T = ∅ as in Theorem 3.1? Could such
sets be homeomorphic to each other?

Proposition 4.3 [5] Suppose S and T are stationary subsets of ω1 and that S − T is stationary
(e.g., in case S ∩ T = ∅). Then there cannot be a continuous injective mapping from S into T , so
that S and T cannot be homeomorphic.

4Recall that f : S → ω1 is continuous provided for each open set H ⊆ ω1, the set f−1[H] is a relatively open
subset of S, i.e., that f−1[H] = S ∩G for some open subset G of ω1.

5The convex components of any open set W are the equivalence classes of the relation given by α ∼ β iff
Conv(α, β) ⊆W , where Conv(α, β) = [α, β] if α ≤ β and Conv(α, β) = [β, α] if β ≤ α.
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Proof: For contradiction, suppose that S − T is stationary and there is a continuous injective
mapping h : S → T . Break S into three subsets

A := {α ∈ S : h(α) < α}
B := {α ∈ S : h(α) = α}
C := {α ∈ S : α < h(α)}.

Note that B ⊆ S ∩ T ⊆ T so that B ∩ (S − T ) = ∅. Therefore S − T ⊆ S = A ∪ B ∪ C gives
S−T ⊆ A∪C. Because S−T is stationary, Corollary 3.2 yields that either A is stationary, or else
C is stationary.

If the set A were stationary, we would have a violation of Lemma 3.3 because h|A is a one-to-
one, pressing-down function. If the set C is stationary, then so is h[C], by Proposition 4.2. But
then the function h−1 restricted to the stationary set h[C] would violate the Pressing Down Lemma
(Theorem 3.3). 2

Corollary 4.4 Suppose there is a continuous injective mapping h : S → T where S and T are
stationary sets. Then S ∩ T is also stationary.

Proof: Because there is a continuous injective mapping from S to T , Proposition 4.3 shows that
S − T cannot be stationary. But S = (S ∩ T ) ∪ (S − T ) is stationary so that the set S ∩ T must
be stationary.2

Proposition 4.3 and Corollary 4.4 show that the key to the existence of a homeomorphism
between stationary sets S and T is the nature of S − T and S ∩ T . For a fuller discussion, see [5].

More recent work has extended Proposition 4.3 in surprising ways. For any topological space X,
the set of continuous real-valued functions on X is denoted by C(X). There are many reasonable
topologies that one might use for C(X), and one of them is the “topology of pointwise convergence.”
In this topology, basic neighborhoods of a function g ∈ C(X) are specified by a finite set F ⊆ X and
a positive real number ε and have the formN(g, F, ε) := {h ∈ C(X) : |g(x)−h(x)| < ε for all x ∈ F};
see [6]. We indicate that the pointwise convergence topology is being used by writing Cp(X). This
space Cp(X) is usually not metrizable, but it is a locally convex topological vector space and its
properties are determined by the topological properties of X. The next result is due to R. Buzyakova
in [2]:

Proposition 4.5 Suppose S and T are stationary sets in ω1 such that S − T is stationary. Then
there cannot exist any continuous, one-to-one function from Cp(T ) into Cp(S). 2

The next result follows from Lemma 3.3. For each limit ordinal λ ∈ ω1, we can choose an
increasing sequence α(λ, 1) < α(λ, 2) < α(λ, 3) < · · · whose supremum is λ. Perhaps surprising,
this cannot be done in any uniform way, as the next result shows. We leave the proof to readers
who want to exercise their Pressing Down skills.

Corollary 4.6 Suppose for each non-zero limit ordinal λ ∈ ω1, we have a strictly increasing se-
quence 〈α(λ, n)〉 whose supremum is λ. It is not possible that α(λ, n) ≤ α(µ, n) for all non-zero
limit ordinals λ, µ with λ < µ and for all n < ω. 2
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Recall that a cardinal κ is regular if the cofinality of κ equals κ, i.e., κ is not the supremum of
fewer, smaller cardinals. Almost everything we have said about ω1 and its stationary sets, including
the PDL, is true with small variations for any uncountable regular cardinal but not always for other
cardinals (for example, the Pressing Down Lemma fails for ωω = sup{ωn : n < ω}). We give two
final examples of the role that stationary sets play in my kind of topology. Recall that any linearly
ordered set has an open-interval topology, and when endowed with the topology, the set becomes
a linearly ordered topological space or LOTS. Any LOTS is a good space in terms of elementary
topology, being Hausdorff, regular, completely regular, normal, and hereditarily normal. Often the
first hard question about a LOTS is whether it is paracompact6, and stationary subsets of regular
uncountable ordinals are the key.

Proposition 4.7 [7] Suppose X is a LOTS. Then X fails to be paracompact if and only if there is
a stationary subset S of a regular uncountable cardinal that embeds as a closed subset of X.

Using a remarkable generalization of Proposition 4.7 by Balogh and Mary Ellen Rudin [1],
Buzyakova and Vural [3] proved that

Proposition 4.8 Any monotonically normal 7 topological group is paracompact. In particular, any
LOTS that is a topological group is paracompact.

5 Ulam matrices, probability measures, and pairwise dis-

joint stationary sets

In this section we return to the question “How many different stationary sets can ω1 have?” We
show that there are uncountably many pairwise disjoint stationary sets in ω1 using ideas that S.
Ulam used to solve a problem in measure theory. See [13] for an extended discussion.

Recall the definition of a probability measure given in an earlier section. A probability measure
on a set X consists of two things, namely, a collection A of subsets of X and a function p : A → [0, 1]
satisfying

(i) X ∈ A with p(X) = 1 ; and

(ii) the collection A is a σ-algebra, i.e., A is closed under the formation of countable
unions and complements; and

(iii) the function p is countably additive, i.e.,

p(
⋃
{An : n < ω}) = Σ{p(An) : n < ω}

whenever 〈An : n < ω〉 is a sequence of pairwise disjoint members of A.

6A space X is paracompact if every open cover of X has an open, locally refinement, equivalently, if any open
cover of X has a partition of unity subordinate to it.

7In a space X let Pairs = {(A,U) : A ⊆ U ⊆ X,A is closed and U is open}. Then X is monotonically normal if
for each (A,U) ∈ Pairs there is an open set G(A,U) with A ⊆ G(A,U) ⊆ cl(G(A,U)) ⊆ U and having G(A,U) ⊆
G(B, V ) whenever (A,U), (B, V ) ∈ Pairs with A ⊆ B and U ⊆ V . Any LOTS is monotonically normal [11].
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A probability measure is non-atomic provided p({x}) = 0 for each x ∈ X. Property (iii) shows
that for any non-atomic probability measure, p(C) = 0 for any countable subset C ⊆ X provided
{x} ∈ A for each x ∈ C.

In an earlier section we gave an example of a non-atomic probability measure defined for all
Borel subsets of ω1.

Early in the last century, mathematicians thought about the question “Given a set X, how
large can the domain of a non-atomic probability measure on X be? Could there be a non-atomic
probability measure whose domain is the collection of all subsets of X?” In 1905 Vitali [17] showed
that no translation-invariant probability measure on R or on [0, 1] ⊆ R could be defined for all
subsets of R (respectively, all subsets of [0, 1]), and his proof is the standard approach in most
analysis textbooks today ([10], [14]). However, what about probability measures that are not
translation-invariant? In [16], Ulam took a different approach to the problem, starting with the
uncountable well-ordered set ω1. In that 1930 paper he introduced a combinatorial object now
called an Ulam matrix [8] [13]. An Ulam matrix is a collection of subsets {U(n, α) : n < ω, α ∈ ω1}
of ω1 with three special properties. To remember the properties, it helps to display the Ulam matrix
in a row and column format with countably many columns, one for each n < ω, and uncountably
many rows, one for each α ∈ ω1.



...
...

...
U(0, α) U(1, α) · · · U(n, α) · · ·

...
...

...
U(0, 1) U(1, 1) · · · U(n, 1) · · ·

U(0, 0) U(1, 0) · · · U(n, 0) · · ·



a) each column is pairwise disjoint, i.e., for each fixed n < ω and distinct α, β ∈ ω1,
U(n, α) ∩ U(n, β) = ∅;

b) each row is pairwise disjoint, i.e., for each fixed α ∈ ω1, if n 6= m, then U(m,α) ∩
U(n, α) = ∅;

c) for each fixed α ∈ ω1,
⋃
{U(n, α) : n < ω} = {β ∈ ω1 : α < β}. (To simplify notation,

we denote that last set by (α,→).)

It is not clear that such matrices exist, and to define the sets U(n, α) we proceed as follows. For
each γ ∈ ω1 the set [0, γ) is finite or countable, so there is a one-to-one function fγ : [0, γ)→ [0, ω).
Define U(n, α) = {γ : α ≺ γ and fγ(α) = n}.

Fix n < ω and suppose γ ∈ U(n, α) ∩ U(n, β). Then α, β ≺ γ and fγ(α) = n and fγ(β) = n.
Because fγ is one-to-one, we know that α = β. This proves (a).

Fix α ∈ ω1 and suppose γ ∈ U(n, α) ∩ U(m,α). Then α ≺ γ and fγ(α) = m and fγ(α) = n.
Because fγ is a well-defined function, we see that m = n. This proves (b).
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Finally, fix α. From the definition of U(n, α) we know that α < γ for each γ ∈ U(n, α), showing
that

⋃
{U(n, α) : n < ω} ⊆ (α,→). Next, consider any γ ∈ (α,→). Then α ∈ [0, γ) so that

fγ(α) ∈ [0, ω), say fγ(α) = n. But then γ ∈ U(n, α) so that we have (α→) =
⋃
{U(n, α) : n ≺ ω}.

This establishes (c) and we can now use our matrices to prove Ulam’s theorem.

Theorem 5.1 (Ulam) No non-atomic probability measure on ω1 can be defined on P(ω1).

Proof: Suppose there is a non-atomic probability measure defined for all subsets of ω1. For each
α ∈ ω1 the set [0, α] is countable so that p([0, α]) = 0. Hence p((α,→)) = p(ω1) − p([0, α]) = 1.
Because (α,→) =

⋃
{U(n, α) : n < ω} by property (c), property (b) gives us that

1 = p((α,→)) = p(
⋃
{U(n, α) : n < ω}) = Σ{p(U(n, α)) : n < ω}

so that there must be some n(α) < ω with p(U(n(α), α) > 0. Because ω1 is uncountable while [0, ω)
is countable, there must be an uncountable subset A ⊆ ω1 and a fixed k ≺ ω with n(α) = k for all
α ∈ A. Hence p(U(k, α)) > 0 for all α ∈ A.

For each α ∈ A there is a positive integer j(α) with p(U(k, α)) > 1
j(α)

. Then there must be an

uncountable B ⊆ A and a fixed positive integer J with j(α) = J for each α ∈ B. Choose J + 1
members of the set B, say α(1), α(2), · · · , α(J + 1). The sets U(k, α(i)) are pairwise disjoint by
property (a) above so we must have

1 = p(ω1) ≥ p(
⋃
{U(k, α(i)) : 1 ≤ i ≤ J + 1}) = Σ{p(U(k, α(i)) : 1 ≤ i ≤ J + 1} > (j + 1)

1

j
> 1

and that is impossible.2

Exercise: (a) Where was AC used in Ulam’s theorem? (b) Let U be any free (= non-principle)
ultrafilter on ω1. Then for each subset S ⊆ ω1 we know that either S ∈ U or else ω1 − S ∈ U .
For S ⊆ ω1, define p(S) = 1 if S ∈ U and define p(S) = 0 otherwise. According to Theorem 5.1,
this p is not a probability measure on the power set P(ω1). Why not? Now look up “real-valued
measurable cardinal.”

What could Ulam’s theorem have to do with probability measures on more familiar spaces such
as [0, 1] or R? If |ω1| = |R| = |[0, 1]| (i.e., if the Continuum Hypothesis holds) then there is a
one-to-one function g from ω1 onto [0, 1] and the function g can be used to transfer the sets of
the Ulam matrix into [0, 1]. The reason that we need the function g to be surjective is to insure
that for each fixed α, the set [0, 1] − g(

⋃
{U(α, n) : n < ω}) is countable so that we can claim

p(
⋃
{g(U(α, n)) : n < ω}) = 1. The best conclusion about [0, 1] that we can get from Ulam’s

theorem is:

Theorem 5.2 If the Continuum Hypothesis holds, then there is no non-atomic probability measure
on [0, 1] that is defined for all subsets of [0, 1].

We close with three consequences of the existence of Ulam matrices. Rudin’s proof in Theorem
3.1 shows that we can get two disjoint stationary subsets of ω1. In fact, one can get many pairwise
disjoint stationary subsets of ω1.
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Corollary 5.3 There are uncountably many pairwise disjoint stationary subsets of ω1.

Proof: For each fixed α ∈ ω1 we know that
⋃
{U(n, α) : n < ω} is the stationary set (α,→).

Therefore Corollary 3.2 assures us that there is some n(α) < ω such that U(n(α), α) is stationary.
Because [0, ω) is countable while ω1 is uncountable, there must be a k < ω and an uncountable
A ⊆ ω1 such that n(α) = k for all α ∈ A. Therefore, for α ∈ A, the sets U(k, α) are all stationary
and because they all lie in column number k of the Ulam matrix, they are pairwise disjoint by
property (a). 2

From Proposition 4.3 we know that disjoint stationary subsets of ω1 cannot be homeomorphic,
so we have the following answer to our earlier question “How many different stationary sets exist
in ω1?”

Corollary 5.4 There is an uncountable family of stationary subsets of ω1, no two of which are
homeomorphic to eachother. 2

Recall Proposition 2.2: any countable intersection of club-sets is a club-set. Our final result
shows how different club-sets and stationary sets can be.

Corollary 5.5 There is a sequence 〈Sn : n < ω〉 of stationary subsets of ω1 with Sn+1 ⊆ Sn for
each n and

⋂
{Sn : n < ω} = ∅.

Proof: From Corollary 5.4 we can find an infinite sequence T1, T2, · · · of pairwise disjoint stationary
subsets of ω1. Let Sn :=

⋃
{Tk : n < k < ω}. Then each Sn is stationary, and

⋂
{Sn : n ≺ ω} = ∅,

as required. 2
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